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Simpli®ed models based on porous electrode theory are used to describe the discharge of re-
chargeable lithium batteries and derive analytic expressions for the speci®c capacity against discharge
rate in terms of the relevant system parameters. The resulting theoretical expressions are useful for
design and optimization purposes and can also be used as a tool for the identi®cation of system
limitations from experimental data. Three major cases are considered that are expected to hold for
di�erent classes of systems being developed in the lithium battery industry. The ®rst example is a cell
with solution phase di�usion limitations for the two extreme cases of a uniform and a completely
nonuniform reaction rate distribution in the porous electrode. Next, a discharge dominated by solid
phase di�usion limitations inside the insertion electrode particles is analysed. Last, we consider an
ohmically-limited cell with no concentration gradients and having an insertion reaction whose open-
circuit potential depends linearly on state of charge. The results are applied to a cell of the form
Lijsolid polymer electrolytejLiyMn2O4 in order to illustrate their utility.

List of symbols

a speci®c interfacial area (cmÿ1)
c concentration of electrolyte in the solution

phase (mol dmÿ3)
c0 initial concentration in solution (mol dmÿ3)
c1 concentration of electrolyte in front of

reaction zone (mol dmÿ3)
cs concentration of lithium in the solid phase

(mol dmÿ3)
ct maximum concentration in solid (mol dmÿ3)
C speci®c capacity (C gÿ1)
D di�usion coe�cient of electrolyte in the

solution (cm2 sÿ1�
Ds di�usion coe�cient of lithium in the solid

electrode particles, (cm2 s)1)
F Faraday's constant (96 487Cmolÿ1)
I super®cial current density (mA cmÿ2)
jn pore wall ¯ux of lithium ions (mol cmÿ2 sÿ1)
J dimensionless pore wall ¯ux de®ned in

Equation 8
k slope of open-circuit potential function
L cell component thickness (m)
M mass per unit area of cell (g cmÿ2)
n parameter representative of electrode particle

geometry
q capacity density of composite positive

electrode (C cmÿ3)
r dimensionless geometric ratio de®ned in

Equation 8

R universal gas constant (8.3143 Jmolÿ1 Kÿ1�
Rs radius of positive electrode material (lm)
s Laplace space variable (sÿ1)
t time (s)
td discharge time (s)
t0i transference number of species i
T temperature (K)
U open-circuit potential (V)
V cell potential (V)
Vc cuto� potential (V)
x distance from the separator/positive electrode

boundary (m)
xr position of the reaction-zone boundary (m)
y dimensionless distance de®ned in Equation 8

Greek letters
e porosity of electrode
H dimensionless concentration de®ned in

Equation 8
j ionic conductivity of electrolyte (S cmÿ1)
q density (g cmÿ3)
s dimensionless time or depletion time
U electrical potential (V)

Subscripts
+ positive electrode
0 initial condition
s separator

Superscripts
0 with respect to the solvent
h standard cell potential
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1. Introduction

A subject of much practical interest is the utility of
capacity against rate (C/I ) and energy against power
(E/P) expressions for both primary [1, 2] and sec-
ondary [2±4] batteries. These correlations are useful
as both a design tool and a method for prediction of
battery performance under di�erent operating con-
ditions. It might also be possible under some condi-
tions to identify the limiting mechanisms in a battery
based on the shape of the C/I or E/P data. Correla-
tions of these types are usually obtained from the
analysis of experimental data and functional ®ts are
developed based on empirically de®ned parameters
with little theoretical meaning.

Capacity±rate and energy±power relationships for
batteries can also be developed by using a mathe-
matical model of a single cell to describe the current±
potential behaviour. Quantities of interest, such as
the capacity, energy and power, are all derived
quantities from the I/V behaviour of the cell. Under
certain simpli®ed conditions, these models reduce to
limiting forms allowing correlations for C/I and/or E
/P data to be developed. In this way, the parameters
appearing in the correlations can be related to fund-
amental physical properties and system speci®ca-
tions. Also, having started with the general
mathematical description, it is possible to develop
criteria for deciding when these limiting cases are
applicable.

Rechargeable lithium and lithium ion cells have
become commercially viable and are under consid-
eration for electric vehicle applications. Mathemati-
cal modelling e�orts have been focused on
optimization of the cell design and system parameters
and the thermal control of the battery module.
General models have been developed to simulate the
behaviour of these systems during charge, discharge
and relaxation [5±7]. However, due primarily to their
generality, these models are complicated, and often
for particular systems a simpli®ed treatment is pos-
sible that captures the essential features of the dis-
charge behaviour.

In previous work, we have analysed both experi-
mental and theoretical I/V data for a variety of lith-
ium-based systems, including lithium metal±polymer
electrolyte cells using poly(ethylene oxide) and lith-
ium tri¯uoromethanesulfonate (PEOnLiCF3SO3) or
single ion conducting polymer electrolytes [5, 8], liq-
uid lithium ion cells like the Sony cell LiC6jLiPF6,
propylene carbonate, diethyl carbonatejLiCoO2 [7]
and gelled-electrolyte systems such as the Bellcore cell
LiC6jLiPF6, ethylene carbonate, dimethyl carbonate,
poly(vinylidene ¯uoride-hexa¯uoropropylene)jLiMn2
O4 [6, 9]. In many cases, the E/P data follow simple
models as discussed earlier. For example, the lithium±
polymer cell with a single ion conducting polymer
electrolyte follows the ohmically dominated battery
model developed previously [10, 11]. In other cases,
such as that of the Bellcore system, although the
discharge behaviour of the cell is dictated by a

complex interplay of ohmic and di�usion phenome-
na, the C/I and E/P data take more simple forms.

2. Classi®cation of analytic solutions

We consider some limiting cases that are applicable
to speci®c systems. These cases can be separated into
two categories based on whether solution-phase
concentration variations exist. The salt concentration
is uniform, for example, with a system having a unity
transference number [8] for the lithium ion or at very
short times, much less than the di�usion time. If this
is the case, the governing equations are much simpler,
and several possibilities exist for the examination of
approximate analytic solutions [12]. When concen-
tration gradients can not be neglected, the situation is
much more complex due to the coupled nature of the
governing equations. For this reason very few ana-
lytic solutions can be found in the literature that in-
clude concentration variations in the solution phase
[12, 13]; this problem is generally relegated to nu-
merical methods.

First, we examine the latter case in which the dis-
charge is dominated by solution-phase di�usion
limitations. We neglect kinetic and solid-phase dif-
fusion limitations and assume that the transport
properties are independent of salt concentration (D
and t0� only, j does not appear in the analysis). The
neglect of kinetic resistances is a good assumption for
the insertion electrodes often used with lithium re-
chargeable batteries. In addition, we focus on a sys-
tem having a single insertion electrode. The
generalization of the results to a lithium ion cell
which employs two di�erent insertion electrodes
should be straightforward. We treat the extreme case
of a completely uniform current distribution in the
porous electrode. This analysis is contrasted with the
Stein [14] model, which considers the transient de-
pletion of the active species from solution at the front
face of the porous electrode due to a high rate dis-
charge: the assumption of a completely nonuniform
current distribution. We also explore an intermediate
approximate solution making use of a reaction zone
assumption.

Next, we treat cases in which the solution-phase
concentration is uniform over the time of discharge of
the battery. A cell dominated by solid state di�usion
limitations inside the insertion-electrode particles is
treated. Di�usion coe�cients for the lithium ion in
insertion electrode materials are often low enough to
bring about this situation. Concentration gradients in
the solution phase are neglected, and a reversible
charge transfer process is assumed. In addition, we
assume the reaction distribution in the porous elec-
trode is uniform. This assumption is necessary to
decouple the governing equations and allow an ana-
lytic solution to be developed.

The last system discussed is an ohmically domi-
nated cell. We assume that kinetic and solution and
solid-phase di�usion limitations do not exist. With
these assumptions, the system becomes similar to an
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ohmically dominated porous electrode model covered
previously [10, 11]. The reaction moves through the
electrode as a front which consumes all of the avail-
able active material at a point before moving on. The
e�ect of an open circuit potential that depends on the
state of charge of the electrode, as in insertion com-
pounds, is included in the treatment [15]. A similar
problem has been considered by Atlung et al. [16, 17].

The primary goal for all the above cases is to ob-
tain expressions for the speci®c capacity as a function
of the discharge rate. From this information, practi-
cal design issues such as optimal electrode thicknesses
and porosities can be approached.

3. Theoretical development

For all cases, the macroscopic transport through the
cell sandwich is treated as one-dimensional (Fig. 1).
The development is based on porous electrode theory
[18], where the electrode is treated as two superim-
posed continua without regard for the actual geo-
metric detail of the pore structure. The separator
consists of either an inert polymer material or a
nonaqueous liquid that acts as the solvent for a
lithium salt. The negative electrode is a lithium foil,
and the positive electrode is a porous electrode con-
sisting of solid insertion material particles, inert
conducting ®ller, and the solution phase. The porous
electrode is assumed to have a very large electronic
conductivity �r� j� and a large exchange current
density for the insertion process. These conditions
hold for typical lithium insertion electrodes under a
3 h discharge [6].

3.1. Case I: Solution-phase di�usion limitations

When concentration variations cannot be neglected
the possibility for ®nding relevant analytic expres-
sions for the specific energy is greatly diminished.
However, as previous simulation results have dem-
onstrated the importance of solution-phase di�usion
limitations in the discharge of these systems [5, 6], it is
useful to explore some simpli®ed cases. The di�er-
ential and algebraic equations that describe the con-
centration, potential and current density in the

solution phase of the porous electrode are in general
nonlinear and coupled [5]. To ®nd an analytical so-
lution we must ®rst decouple these equations by as-
suming a form for the reaction rate distribution
through the porous electrode. Once jn is speci®ed the
current density and concentration pro®les may be
determined using the boundary and initial conditions
and the potential gradient is determined from these.
Figure 1 shows the coordinate axis and cell dimen-
sions.

A material balance on the salt in the solution
phase of the porous electrode gives

e
@c
@t
� eDeff

@2c
@x2
� ajn�1ÿ t0�� �1�

where the di�usivity is an e�ective value accounting
for the actual path length of the species using the
Bruggeman expression [19]

Deff � e1=2D �2�
There are two regions in the cell: (i) in the solution
phase �c � c2; Ls � x � Ls � L��; of the porous
electrode the above equations apply as written (ii) in
the separator region �c � c1; 0 � x < Ls�; jn � 0 and
e � 1. For a galvanostatic discharge the boundary
and initial conditions are

@c1
@x
� ÿ I�1ÿ t0��

FD
at x � 0 �3�

@c2
@x
� 0 at x � Ls � L� �4�

c1 � c2 � c0 at t � 0 �5�
Continuity of the concentration and ¯ux across the
separator/porous electrode internal boundary
�x � Ls� lead to

c1 � c2 at x � Ls �6�
@c1
@x
� e3=2

@c2
@x

at x � Ls �7�

Dimensionless parameters are de®ned as follows:

H � c
c0
; y � x

Ls
; r � L�

Ls

s � Dt
L2s
; J � a�1ÿ t0��L2s jn

eDc0

�8�

Then the di�erential equation and boundary condi-
tions become

@H2

@s
� e1=2

@2H2

@y2
� J �9�

in the porous electrode and

@H1

@s
� @

2H1

@y2
�10�

in the separator. The boundary conditions become

@H2

@y
� 0 at y � 1� r �11�

@H1

@y
� ÿc with c � I�1ÿ t0��Ls

FDc0
at y � 0 �12�

Fig. 1. Lithium/polymer cell sandwich, consisting of lithium foil
negative electrode, solid polymer electrolyte, and composite posi-
tive electrode.
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H1 � H2 � 1 at s � 0 �13�
H1 � H2 at y � 1 �14�

@H1

@y
� e3=2

@H2

@y
at y � 1 �15�

The function J needs to be speci®ed to evaluate the
solution to Equations 9 and 10.

The reaction rate distribution in the porous elec-
trode can be complex as it re¯ects the tradeo� be-
tween ohmic and kinetic resistances as well as
solution-phase concentration variations. However, a
uniform current distribution results when using an
insertion material having an open circuit potential
that depends strongly on the state of charge of the
system [6]. Newman [18] has shown that a uniform
current distribution can be expected when kinetic
resistances dominate ohmic resistances. In either case
it is possible to assume that jn is given by its average
value everywhere in the porous electrode

jn � ÿI
aFL�

or J � ÿc
er

�16�

We make this assumption here and later consider the
opposite case of the extreme nonuniform current
distribution (the Stein analysis) for comparison.

Solving Equations 9 and 10 to ®nd the steady state
solution �@=@t � 0� we obtain

H1 � Bÿ cy �17�
and

H2 � E ÿ J
e1=2

y2

2
ÿ �1� r�y

� �
�18�

where the constants are

B � 1� c 1ÿ 1

2�1� er� ÿ
r2

3e1=2�1� er�
� �

�19�

E � 1ÿ Jer
2�1� er� �

J
e1=2�1� er�

� e
3
� er

2
ÿ r ÿ 1

2
ÿ e�1� r�3

3

" #
�20�

Subscript 1 denotes the separator region and 2 refers
to the porous electrode region. Example steady state
concentration pro®les are given in Fig. 2 for the
model system described in Appendix A. The con-
centration pro®les scale with the current and pivot
around a point that depends on the values of r and e,
which in this example are r � 4 and e � 0:5.

The concentration has a minimum value at the
back of the porous electrode �y � 1� r�. This value
can be used to check whether the concentration is
driven to zero during the discharge, as for the highest
current shown in Fig. 2. If this concentration at the
back is greater than zero, then the cell is not limited
by solution-phase transport and discharges until ei-
ther all the capacity is consumed or the cuto� po-
tential is exceeded. If it useful to express this in terms
of a `limiting' current, below which the concentration
is not driven to zero at steady state,

I � FDc0
�1ÿ t0��Lsf �r; e�

�21�

where

f �r; e� � 1

2�1� er� �
�1� r�2
2re3=2

� 1

re3=2�1� er�
e
3
� er

2
ÿ r ÿ 1

2
ÿ e�1� r�3

3

" #
�22�

Note the analogy between the limiting current at a
¯at electrode and that in a porous electrode given in
Equation 21. The latter value is reduced by the factor
f , which is a function of the geometric parameters of
the porous electrode only and approaches 0.5 as
r! 0. This limit as r! 0 is the correct result for the
limiting current to a planar electrode. Figure 3

Fig. 2. Steady state concentration pro®les across the full cell for
galvanostatic discharges at various current densities. Separator/
positive electrode boundary: dotted line. System parameters: see
Appendix A.

Fig. 3. Limiting current in the porous electrode is reduced by
factor f, given above as a function of the geometric parameters e
and r (ratio of positive electrode to separator thickness).
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demonstrates the behaviour of the function f �r; e� as
a function of r for various values of e.

The full problem can be solved by expressing the
problem in terms of the new variable

A�s; y� � H�s; y� ÿHss�y� �23�
Hss is de®ned as the steady state solution given in
Equations 17 and 18. The equation then becomes

@A2

@s
� e1=2

@2A2

@y2
�24�

in the porous electrode and

@A1

@s
� @

2A1

@y2
�25�

in the separator. The boundary conditions are

@A1

@y
� 0 at y � 0 �26�

@A2

@y
� 0 at y � 1� r �27�

A1 � A2 � 1ÿHss�y� at s � 0 �28�
A1 � A2 at y � 1 �29�

@A1

@y
� e3=2

@A2

@y
at y � 1 �30�

The transient problem is solved by separation of
variables: the solution has the form

A1�s; y� �
X1
n�1

Fn exp�ÿk2ns� cos�kny� �31�

A2�s; y� �
X1
n�1

Gn exp�ÿk2ns� cos�kn�1� r ÿ y�� �32�

The constants Fn and Gn are determined by using the
orthogonality condition of the eigenfunctions:

Fn � 2 �1ÿ B�kn sin�kn� � c cos�kn� � ckn sin�kn� ÿ c� �
k2n � 1

2 kn sin�2kn�
� �

�33�

Gn ��1ÿ E� sin�knr� � J

2e1=2k2n
�2ykn cos�kn�1� r ÿ y��

� 2 sin�kn�1� r ÿ y�� ÿ k2ny2 sin�kn�1� r ÿ y���

� J�1� r�
e1=2

�cos�knr� ÿ 1�
kn

ÿ sin�knr�
� �

�34�

The matching conditions at y � 1 provide a gener-
ating equation for the eigenvalues

tan �kn� � ÿe5=4 tan�eÿ1=4knr� �35�
The ®rst few eigenvalues are su�cient for our pur-
poses; for r � 4 and e � 0:5 these are

k1 � 0:32566; k2 � 0:80905;

k3 � 1:31882; k4 � 1:83231 �36�
The time for the concentration at the back face to

reach zero is the relevant quantity for our analysis.
This situation occurs only if the discharge rate is
above the `limiting' current (see Equation 21). For
rates near the limiting current it is su�cient to use

only a single eigenvalue when calculating the time to
deplete the solution. Then, the time is given by

sd � 1

k21
ln

ÿG1

H2;ss�y � 1� r�
� �

�37�

When operating much higher than the limiting cur-
rent it becomes increasingly di�cult to use Equa-
tion 32 to determine the discharge time because of the
need to evaluate an increasing number of terms in the
equation. In this case it is easier to examine a short-
time solution to the original di�erential equations.
Using a Laplace transformation and then taking the
inverse transform for large values of s, the solution-
phase concentration at the back of the positive elec-
trode is

H2 � 1� Js at y � 1� r �38�
This gives a depletion time of

sd � ÿ1J �39�

These two expressions are used to construct Fig. 4,
which gives the time to deplete the solution as a
function of the ratio of the limiting current to the cell
current. The limiting current for the present example
system (see Appendix A) is calculated from Equation
21 to be Ilim � 1:12 mA cmÿ2. Although the full
Equation 32 may be used to generate this ®gure more
accurately over the whole range, these two approxi-
mate expressions are capable of capturing the full
behaviour of the system. This approximation also
avoids the use of numerical computations to evaluate
the series developed above.

For systems limited by solution-phase transport
we can equate the time td with the discharge time and
use this in an expression for the system's capacity.
The speci®c capacity is the product of the current

Fig. 4. Time to reach zero concentration at the back of the positive
electrode is plotted from Equation 37, which uses only a single
eigenvalue, and the short time solution given by Equation 39, as a
function of the discharge rate. Ilim � 1:12mAcmÿ2 for r � 4 and
e � 0:5.

850 M. DOYLE AND J. NEWMAN



density and the discharge time divided by the mass
per unit area

C � Itd
M

�40�

For this work we take the mass to include the sepa-
rator and positive electrode only,

M � qsLs � eqs � �1ÿ e�q�
� �

L� �41�
giving M � 0:059 g cmÿ2 for the present example
system. Figure 5 is the resulting capacity±rate be-
haviour of the system. There are three distinct regions
of the plot. At low rates (when I < Ilim), the capacity
is completely exhausted during the discharge, and
thus the maximum capacity is attained. The maxi-
mum capacity for this system is calculated to be
Cmax � 299:6 C gÿ1. As the limiting current is ex-
ceeded, the capacity drops o� steeply with increasing
rate. A break in the curve occurs when the single
eigenvalue solution is replaced by the short-time so-
lution. Because the short-time solution found the
depletion time to be inversely proportional to the
current density, the capacity appears to be indepen-
dent of rate at these very high rates. This unusual
result does not happen in real systems because of the
increasing ohmic drop, which eventually dominates
the discharge time.

These short-time results for a uniform reaction
rate distribution are compared with the Stein short-
time case [14]. Stein originally examined the possi-
bility of failure of the lead-acid battery due to the
depletion of the acid in the pores at the front of the
positive electrode. In our adaptation of the Stein case
the reaction-rate distribution is described by a delta
function at the separator/positive electrode boun-
dary. This reaction distribution represents the ex-
treme case of a solution-phase ohmically-limited
system and is thus more likely to approximate the

actual reaction distribution at very high rates than
the uniform case. In contrast to the previous case (see
Appendix B), for this case the depletion time depends
on the inverse of current squared,

td � pF 2Dc20
4�1ÿ t0��2I2

1� e5=4
h i2

�42�

This implies a capacity that is inversely proportional
to the discharge rate at high rates, or a slope of )1 on
the log-log capacity±rate plot (see Fig. 5).

A variation of this behaviour is to have a sharp
reaction zone moving through the positive electrode
as the capacity is consumed locally. This is a more
physically realistic extension of the Stein analysis
because local concentration variations, both in solu-
tion and in the solid phase (if applicable), cause the
reaction to shift to other regions of the porous elec-
trode. A quasisteady state analysis of the moving-
zone case provides an analytic solution for the ca-
pacity-rate behaviour (details in Appendix C). A new
parameter q, the capacity density of the composite
electrode, arises in this case.

The Stein case and the uniform-reaction-rate dis-
tribution case are two limits of a continuum of be-
haviour, each valid over only a small range of
parameter space. Because the reaction zone cases
correspond more closely to a high rate discharge we
more likely expect to see this high rate asymptotic
behaviour for solution-phase di�usion limitations on
a capacity±rate plot. For a concentrated reaction
zone the Stein result should be a lower limit on ca-
pacity. If the time of discharge is long enough, so that
the product Dtd approaches or exceeds L2s , the region
of concentration depletion will extend to the anode,
where there is an unlimited supply of lithium ions.
Consequently, for a sharp reaction zone the results
should follow the maximum capacity at the upper left
of Fig. 5, then follow (at higher rates) the moving
zone results and, ®nally, follow the Stein results (at
the bottom right). There never would be a rate (for
electrolyte depletion) beyond which the cell would fail
instantaneously (zero capacity). As parameters are
shifted from those on which Fig. 5 was based, the
region of the moving zone model may shrink or ex-
pand, particularly as q is changed, q being a param-
eter absent from all the curves on Fig. 5 except the
moving zone curve (and the maximum capacity line).

Figure 5 also shows that the uniform reaction
distribution permits the largest discharge rate before
concentrations manifest themselves. This is appro-
priate since any focusing of the reaction rate com-
promises the ability of the system to deplete the
electrolyte at the back of the positive electrode.

The above result for the speci®c capacity can be
used to express the speci®c energy of the system as a
function of discharge rate. This requires an estimate of
the average cell potential during discharge. The cell
potential may simply be taken as the average of the
open circuit value and the cuto� potential; then the
speci®c energy is directly proportional to the capacity.

Fig. 5. Model predictions for capacity against discharge rate of a
cell limited by solution-phase di�usion. Reaction distribution in
positive electrode is assumed to be uniform for the solid line.
Dashed lines: Stein�14� result and moving zone result.
M � 0:059 g cmÿ2.
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Alternatively, more sophisticated approaches may be
taken, accounting for the e�ect of the discharge rate
on the average cell potential through ohmic drop and
concentration overpotential. The larger of these
overpotentials is the dominant loss of energy in the
cell. A more sophisticated approach like this requires
further assumptions about the system (and hence
more parameters). We also quickly lose the simplicity
that was the advantage of these limiting cases. For
these reasons, we will not attempt to estimate the
speci®c energy, but leave the results here and those to
follow in terms of the speci®c capacity.

3.2. Case II: Solid-phase di�usion limitations

It is possible for the discharge of a cell to be limited
by di�usion of lithium into the insertion electrode
structure. This was a major limitation to the high rate
discharge of early cells using nonporous thin ®lm
electrodes. Among the advantages of the porous
electrode con®guration is the small particle size and
reduced di�usion length in the electrode phase. This
reduces the solid-phase di�usion limitations some-
what; a measure of their importance can be found
from the parameter [6, 7]

Ss � R2
s I

DsF �1ÿ e�ctL� �43�

a ratio of the time of discharge to the time constant
for di�usion. For Ss � 1, di�usion in the solid phase
is su�ciently fast, and it is possible to neglect the
impact of solid-phase di�usion limitations on the
discharge.

If severe di�usion limitations exist the battery ca-
pacity may be estimated by relating the discharge
time to the time to reach a limiting current in the solid
phase. The reaction rate distribution in the porous
electrode is assumed uniform and equal to its average
value (Equation 16). We also assume the di�usion
coe�cient of lithium in the insertion material is a
constant. The mathematical formulation of the
problem is then

@cs
@t
� Ds

r2
@

@r
r2
@cs
@r

� �
�44�

Boundary conditions include

@cs
@r
� 0 at r � 0 �45�

Ds
@cs
@r
� I

aFL�
at r � Rs

cs � c0s at t � 0

A solution to this problem can be found [20], but it is
expressed as an in®nite series that is cumbersome to
evaluate.

As in case I we develop solutions to Equation 44
that are valid for short and long times; these illustrate
the behaviour of the system without being too com-
plicated to be useful. For short discharge times, or

high rates, a planar di�usion model is valid, giving
the following relationship between discharge time
and rate

td � pc2t F
2DsaL�
4I2

�46�

The surface area per unit volume for the porous
electrode is related to the particle size through

a � n�1ÿ e�
Rs

�47�

where n � 1; 2 or 3 for planar, cylindrical or spherical
particles, respectively. For cylindrical and planar
particles, Rs is half the shortest characteristic length
of the particle. Disc-shaped particles, whose thickness
is less than their radius, should be treated as planar.
From this we ®nd

C � Itd
M
� pc2t F

2Dsn�1ÿ e�L�
4MRsI

�48�

where the mass M is given by Equation 41, for ex-
ample. Thus, the capacity is inversely proportional to
the rate at high rates.

For longer times, or lower rates, a pseudo-steady-
state is established in the particles. This leads to a
steady concentration pro®le of the form

cs�r � 0� ÿ cs�r� � ÿIr2

2aFDsL�Rs
�49�

The discharge time is approximated as the time for
the concentration of lithium at the surface to reach
the maximum value. The capacity is then calculated
from

C � F e�L�
M

�cs ÿ c0s
� � �50�

with �cs representing the average concentration of
lithium in the solid at the end of discharge. This leads
to

C � F e�L�
M

ct ÿ c0s ÿ
3RsI

10aFDsL�

� �
�51�

In Fig. 6, the two solutions developed above are
plotted as the logarithm of the speci®c capacity
against the logarithm of the discharge rate. The pa-
rameters used to generate Fig. 6 are given in Ap-
pendix A; the cell is again the LijLiMn2O4 system.
Figure 6 has the expected behaviour at low rates,
where the capacity approaches the theoretical maxi-
mum value. At higher rates the capacity±rate plot has
a slope of )1. The high rate asymptotes for both this
solid state di�usion problem and the Stein solution-
phase di�usion model (Appendix B) have identical
slopes of )1. However, the low rate regions of the
capacity±rate plot have di�erent forms. In general, a
higher capacity is attained in case II than in case I at a
given rate with the present set of parameter values (cf.
Figs 5 and 6). This indicates that solid state di�usion
limitations are not as restrictive as solution-phase
di�usion limitations in this system.
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3.3. Case III: Ohmically-dominated reaction
zone model

The neglect of concentration gradients represents a
great simpli®cation in the theoretical treatment. This
assumption will hold for any system with a unity
transference number for the lithium ion; several
polymer electrolytes have been developed that ful®ll
this condition [21]. With this assumption, as well as
those given previously, the system is ohmically
dominated. The insertion reaction moves through the
porous electrode like a spike, consuming all the active
material before moving on. This continues until ei-
ther the cuto� potential is reached or the active ma-
terial is completely consumed [10, 11].

Analysis details have been published previously
[15]; for this work we simply use the ®nal results. The
cell potential for an ohmically-dominated system
with a linear open circuit potential is

V � Uh ÿ ILs
js
ÿ I2t

jq
�52�

The cell potential is independent of the slope of the
open circuit potential curve, and hence becomes
identical to that used in [11].

Setting the cell potential in Equation 52 equal to
the cuto� potential determines the time of discharge,

td � jq
I2

U h ÿ Vc ÿ ILs
js

� �
�53�

As with the previous cases an expression for the
discharge time of the battery provides a means for
calculating the capacity

C � Itd
M
� jq

IM
Uh ÿ Vc ÿ ILs

js

� �
�54�

Equation 54 is the basis for the capacity-rate plot
given as Fig. 7. The system under consideration, de-

scribed in Appendix A, is a lithium/manganese oxide
cell with a solid polymer electrolyte. The dashed line
on Fig. 7 indicates the maximum speci®c capacity
(360:1 C gÿ1) that the system can provide, calculated
by assuming a useful manganese oxide stoichiometry
of 0:2 � y � 1:0 in LiyMn2O4: A substantial portion
of the capacity±rate plot has a slope of )1. At very
high current densities, the maximum discharge rate is
approached, and the curve bends over and becomes
vertical.

The speci®c capacity given by Equation 54 con-
tinues to increase at lower discharge rates because it
neglects the ®nite amount of active material in the
cell, corresponding to the dotted line on Fig. 7. Thus,
the speci®c capacity must bend over at lower rates
and approach the maximum speci®c capacity indi-
cated on the ®gure, as shown by the solid curve. The
discharge time chosen to be the lower of Equation 54
and

td � qL�
I

�55�

gives the expected behaviour of the capacity±rate
plot.

4. Comparison among cases

The utility of limiting cases developed above is in the
analysis and correlation of experimental capacity±
rate data. First, experimental data may possibly be
used to distinguish among the phenomena dominat-
ing the discharge of a battery. Second, simpli®ed
expressions of this form have been used in the design
and optimization process, as a means of assessing the
impact on the performance of varying system pa-
rameters [6, 10, 11]. However, a more detailed
mathematical model is generally required for the ®nal
optimization of the battery design. This arises natu-

Fig. 6. Log-log capacity±rate plot for a hypothetical system lim-
ited by solid state di�usion in electrode particles. The two lines
come from analytic solutions for short and long times, respectively.
M � 0:059 g cmÿ2.

Fig. 7. Theoretical capacity±rate plot for lithium/polymer/lith-
ium±manganese oxide system with no concentration gradients.
Dotted line: prediction of reaction zone model; dashed line: max-
imum speci®c capacity. Solid line results from combining the re-
action zone model with a maximum capacity condition.
M � 0:031 g cmÿ2.
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rally as the optimum design will usually be one in
which several phenomena are balanced against one
another, and no single phenomenon (i.e., ohmic drop,
di�usion in the solution phase, etc.) dominates the
battery behaviour.

There are many similarities in the results for the
above cases. In each case, the capacity reaches its
maximum value at low rates and decreases towards
zero at high rates. Regions of the log-log capacity±
rate plot where the slope is )1 are seen in each case.
The ohmically-dominated case has a region of slope
)1 whose size varies based on the parameters em-
ployed; in general this region becomes larger for
thicker and less porous electrodes. These features
make it di�cult to distinguish among the various
phenomena based on qualitative features of the
capacity±rate data.

Dimensionless parameters can be developed and
used to determine the dominant limitation in the
battery. We can, for example, use the high-rate as-
ymptotes found earlier to determine which phenom-
enon is limiting for a given system based on the
values of certain parameters. One way to proceed is
to make a direct comparison between log-log capac-
ity±rate plots for each case. The discharge time varies
with the current density in a similar manner at high
rates for each case, which can be seen by comparing
Equations 42, 46 and 54. We assume that, for a given
system, the smallest of these discharge times is dom-
inant. We use the result from the Stein analysis to
represent the aysmptotic behaviour of a system
dominated by solution-phase di�usion limitations.
Then, the relative magnitudes of the constants pre-
ceding the above expressions for discharge time
against Iÿ2 determine the dominant phenomenon.

A log-log plot of the ratios of these constants
separates the overall behaviour of the system into
three categories: ohmically dominated, solid-phase
di�usion dominated and solution-phase di�usion
dominated. Figure 8 shows the three regions of
behaviour. Interfacial kinetic resistances have been
neglected. The two ratios plotted are

r1 � e7=2

3e�
c0
ct

� �2
1

�1ÿ t0��2
DRs

DsL�
�56�

a ratio of solid to solution-phase di�usion times, and

r2 � pe7=2F 2Dc0
4�1ÿ t0��2jqUh�1ÿ Vc=U h� �57�

a ratio of ohmic drop to solution-phase di�usion. We
neglect the ohmic drop through the separator in
Equation 54 to allow the dimensionless ratios to be
independent of discharge rate. The region in which a
system operates is determined from these dimen-
sionless parameters. The limiting cases considered
above provide only approximate expressions, and for
systems that are near, or on the border, between two
or more phenomena, this simpli®ed treatment will not
hold.
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Appendix A: Parameters used in the models

We modelled a system with a lithium foil negative
electrode, a solid polymer electrolyte separator and a
lithium-manganese-oxide composite positive elec-
trode. In the simpli®ed treatment of case I, the
transport properties are assumed to be constant and
equal to their values at the initial concentration.
Thus, the salt di�usion coe�cient is 7:5� 10ÿ8

cm2 sÿ1 [22], and the transference number is 0.2 [22].
The system parameters used in this case include
Ls � 50 lm, L� � 200 lm, e � 0:5, and c0 �
2 mol dmÿ3. Densities for the positive electrode and
separator used to calculate the system's mass are
q� � 4:1 g cmÿ3 and qs � 1:2 g cmÿ3. The useful
range of positive electrode stoichiometry is assumed
to equal 0:20 � y � 1:0 in LiyMn2O4. This gives a
maximum speci®c capacity of 1767:6 C cmÿ3 for the
positive electrode material, or 299:6 C gÿ1 based on
the mass of the composite positive electrode (polymer
plus active material). Conducting additives and
binders are not included in the present treatment.

For case II, the solid-state di�usion coe�cient of
lithium in the lithium±manganese oxide spinel is
1� 10ÿ9 cm2 sÿ1 [23]. In addition to the values given
for case I, other parameters needed are an average
particle radius, Rs � 10 lm, the theoretical maximum
solid concentration, ct � 22:9 mol dmÿ3, and the
surface area per unit volume for the porous electrode,
a � 1:5� 103 cmÿ1.

The separator for case III is an idealized polymer
with a unity lithium ion transference number, a
conductivity of 4:0� 10ÿ5 S cmÿ1, and a separator
thickness of 10lm. The capacity density of the lith-
ium-manganese-oxide electrode is taken to be
q � 1767:6 C cmÿ3; this equates to 360.1 C gÿ1 based
on the composite positive electrode mass. The initial
open circuit potential is 4.0 V and the cuto� potential
used is 2.0 V. The values of the electrode thickness
(L� � 95:4 lm) and porosity (e � 0:338) are obtained
by maximizing the cell's speci®c energy for a 3 h
dicharge time. The mass per unit area of the cell,
calculated using Equation 41 in the text, is
0.031 g cmÿ2.

Appendix B: Derivation of the Stein analysis

Under very high rate discharges, a battery may shut
o� due to depletion of the active species at the front
face of the porous electrode. This situation was ®rst
considered by Stein [14], where it was applied to the
lead±acid battery. One interpretation of the Stein case
is presented here. We assume the reaction is con®ned
to a thin region at the electrode/separator boundary.
Thus,

jn � ÿId�xÿ Ls�
aF

�B-1�

where d�x� represents the Dirac delta function.
The Laplace transform of Equation 9 with J � 0 is

s �H2�s; y� ÿ 1 � e1=2
@2 �H2

@y2
�B-2�

This has the solution

�H2 � 1

s
� A2�s� expÿ �y ÿ 1�s1=2

e1=4

� �
�B-3�

The Laplace transform of Equation 10 is

s �H1�s; y� ÿ 1 � @
2 �H1

@y2
�B-4�

with the solution

�H1 � 1

s
� A1�s� exp�y ÿ 1�s1=2

h i
�B-5�

Application of continuity of concentration at y � 1
gives

A1�s� � A2�s� � A�s� �B-6�
The value of the constant is found by applying

continuity of ¯ux at the boundary y � 1. The balance
on the ¯ux of cations (or anions) is related to the
current density through

I
F
� N�� y � 1ÿ� ÿ N�� y � 1�� �B-7�

which becomes

I
F
� ÿD

@c
@x
� y � 1ÿ� �

t0�I
F
ÿ ÿe3=2D

@c
@x
� y � 1��

� �
�B-8�

Expressed in terms of the dimensionless variables
from the text,

c
s
� ÿ @

�H1

@y
� y � 1ÿ� � e3=2

@ �H2

@y
� y � 1�� �B-9�

Substitution of the partial derivatives of Equations
B-3 and B-5 leads to

c
s
� ÿA�s�s1=2 1� e5=4

h i
�B-10�

and also

�H2� y � 1; s� � 1

s
ÿ c

s3=2
1

1� e5=4
�B-11�

The inverse Laplace transform of Equation B-11 is

H2� y � 1; s� � 1ÿ 2c
s
p

h i1=2 1

1� e5=4
�B-12�

leading to the transition time

sd � p
4c2

1� e5=4
h i2

�B-13�

This is written in dimensional terms in Equation 42.

Appendix C: Derivation of the moving-zone model

In the moving-zone analysis, a sharp reaction zone
moves through the positive electrode consuming all
the available capacity before moving on. The con-
centration distribution ahead of the zone is uniform,
while that behind the zone obeys the conservation of
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mass condition for a quasisteady state pro®le. This
gives a linear concentration in each region, related to
the current density by

I
F
� ÿ e3=2D

1ÿ t0�

dc
dx
� ÿ D

1ÿ t0�

dc
dx

�C-1�

where the middle expression corresponds to the pos-
itive electrode and the right expression to the sepa-
rator. Using this result, the concentration pro®le is

c � c1 for Ls � xr < x < Ls � L� � C-2�

c � c1�
I�1ÿ t0��

FDe3=2
�xr ÿ x� Ls� for Ls < x < Ls � xr

c � c1� I�1ÿ t0��
FD

xr
e3=2
ÿ x� Ls

h i
for 0 < x < Ls

The position of the reaction zone, xr, is measured
with respect to the positive electrode±separator in-
terface.

Application of conservation of mass provides an
additional restriction on the concentration pro®le
and relates c1 to c0. By setting c1 � 0 in the above
expression, the position of the reaction zone xr at the
end of discharge as a function of the current density I
is obtained. To be meaningful, the reaction zone
position must be less than L�.

The position of the zone is given by

xr � ÿ Ls
e
� L2s

e2
ÿ L2s e

1=2 � 2c0�eL� � Ls�FDe1=2

I�1ÿ t0��
� �1=2

�C-3�
The capacity consumed by the reaction may be ex-
pressed in terms of the reaction zone position as

C � xr
L�

qL�e�
M

�C-4�

This capacity is plotted in Fig. 5 in the text.
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